
期刊简介
中国血液流变学杂志1991年创刊,为中国科学技术协会主管,中国生物医学工程学会主办的该学科唯一期刊。编辑委员会荟萃了全国该学科著名专家,具有学术权威性。本刊被多家数据库收录,为国家科技部中国科技论文统计源期刊(中国科技核心期刊)。本刊设置基础研究、临床研究、方法与技术、药物应用、综述、讲座等栏目。欢迎相关学科专家来稿。本刊将继续保持已有特色,与时俱进,改进办刊理念,提高时效性、先进性、可读性,热忱为广大读者、作者服务。 《中国血液流变学杂志》第五届编辑委员会名单:首席顾问:阮长耿;顾问:包仕尧,施永德,文宗曜,雷震甲;编辑委员会主任:葛建一;编辑委员会副主任:廖福龙,侯建全,王天佑;主编:王天佑;委员(按姓氏笔划排列):王天佑,王兆钺,王淑荣,王瑞兴,龙建军,孙汉英,严文华,杨向军,杨建平,杨炳华,吴刚,吴德沛,何作云,沈振亚,张世明,张庆富,张周良,张晓膺,侯建全,姜瑾,洪志成,高泉根,涂友斌,戚其学,葛建一,董万利,覃军,廖福龙,缪丽燕,魏茂元;责任编辑:王军
如何识别时间序列数据中的偏差?
时间:2024-11-28 17:51:39
可视化方法
绘制时间序列图:将时间序列数据绘制成折线图,直观地观察数据随时间的变化趋势。如果数据存在偏差,可能会出现不符合预期规律的情况。
季节性和周期性分解图:对于具有季节性或周期性的时间序列,可以使用季节性分解或周期图来观察。如果分解后的季节性成分或周期成分出现异常的形状、强度或相位变化,可能提示数据偏差。
平稳性检验(针对非季节性数据):常用的方法有 ADF(Augmented Dickey - Fuller)检验和 KPSS(Kwiatkowski - Phillips - Schmidt - Shin)检验。如果数据应该是平稳的,但检验结果显示非平稳,且通过观察序列图没有发现明显的趋势或结构变化,可能是数据存在偏差。
白噪声检验:白噪声序列是指序列中的各项是相互独立且均值为零、方差恒定的随机变量。通过 Ljung - Box 检验等方法来检查时间序列是否为白噪声。如果数据应该不是白噪声(如存在趋势或季节性),但检验结果显示是白噪声,或者反之,可能是数据存在偏差。例如,在分析气温的时间序列时,正常情况下气温序列不是白噪声,因为有明显的季节性和趋势,如果检验结果显示是白噪声,可能是数据记录的时间间隔错误或者数据缺失导致的。
正态性检验(如果适用):对于一些时间序列模型(如基于正态分布假设的模型),可以使用 Shapiro - Wilk 检验或 QQ 图来检查数据的正态性。如果数据严重偏离正态分布,且这种偏离不符合数据的实际性质,可能是数据偏差。与行业数据对比:将自己的时间序列数据与同行业的其他可靠数据来源进行对比。如果差异显著,可能存在数据偏差。
与历史数据对比(如果有):如果有同一变量的历史数据,比较当前时间序列和历史数据的特征。
与预期模式对比:根据业务知识、领域理论或经验预期,判断时间序列数据是否符合正常模式。残差分析(针对拟合模型):在拟合时间序列模型(如 ARIMA 模型、指数平滑模型等)后,检查模型残差。残差应该是随机分布且均值接近零、方差相对稳定。如果残差呈现出明显的趋势、周期性或自相关性,可能是数据存在偏差或者模型设定错误。
参数稳定性检查(针对动态模型):对于具有自适应或动态参数的时间序列模型(如时变参数模型),检查参数是否在合理范围内稳定变化。如果参数出现突然的跳跃、不合理的增长或衰减,可能是数据偏差导致模型过度拟合或错误估计。例如,在卡尔曼滤波模型用于跟踪目标位置的时间序列时,如果位置参数出现不合理的突变,可能是传感器数据的偏差导致的。